Prototyping Tip #6: It Doesn't Have to be Digital

Your goal is to loop as usefully and as frequently as possible. 5o, if you can manage
it, why not just get the software out of the way? If you are clever, you can prototype
yvour fancy videogame idea as a simple board game, or what we sometimes call a
paper prototype. Why do this? Because you can make board games fast, and often
capture the same gameplay. This lets you spot problems sooner — much of the
process of prototyping is about looking for problems, and figuring out how to fix
them, so paper prototyping can be a real time saver. If your game is turn-based to
start with, this becomes easy. The turn-based combat system for Toontown Online
was prototyped through a simple board game, which let us carefully balance the
many types of attacks and combos. We would keep track of hit points on paper or
on a whiteboard, and play again and again, adding and subtracting rules until the
game seemed balanced enough to {1y coding up.

Even real-time games can be played as paper prototypes. Sometimes they can be
converted to a turn-based mode that still manages to capture the gameplay, Other
times, you can just play them in real-time, or nearly. The best way to do it is to have
other people help you, We'll consider two examples,

Tetris: A Paper Prototype

Let's say vou wanted to make a paper prototype of Tetriz, You could cut out little
cardboard pieces, and put them in a pile. Get someone else to draw them at ran-
dom, and start sliding them down the “board” (a sketch you've drawn on a piece of
paper), while you grab them, and try (o rotate them into place. To complete a line,
you have to just use your imagination, or pause the game while you cut the pieces
with an X-acto knife, This would not be the perfect Tetris experience, but it might
be close enough for you to start to see if you had the right kinds of shapes, and also
enough to give you some sense of how fast the pieces should drop. And you could
get the whole thing going in about 15 minutes.

Doom: A Paper Prototype

Would it be possible to make a paper prototype of a first person shooter? Sure! You
need different people to play the different Al characters as well as different play-
ers. Draw out the map on a big piece of graph paper, and get little game pieces to
represent the different plavers and monsters. You need one person to control each

a8



of the players and one for each of the monsters. You could then either make some
turn-based rules about how w move and shoot, or get yoursell a metronome! [t
is pasy to find free metronome software online, Configure your metranome (o tick
ance every five seconds, and make a rule that you can move one square of graph
paper with every tick. When there is a line of sight, you can take a shot at another
player or monster, but only one shot per tick. This will give the feeling of playing
the whole thing in slow mation, but that can be a good thing, because it gives you
time to think about what is working and not working while you are playing the
game. You can get a great sense of how big your map should be, the shapes of hall-
ways and rooms that make for an interesting game, the properties your weapons
should have, and many other things — and you can dao it all lightning fast!

Prototyping Tip #7: Pick a "Fast Loop” Game Engine

The traditional method of software development is kind of like baking bread:

Write code

Compile and link

Run your game

Mavigate through vour game to the part you want 1o test
Test it out

Go back o step 1

tns . ol L

If you don't like the bread (vour test results), there is no choice but to start the
whole process over again. [t takes way too long, especially for a large game, By
choosing an engine with the right kind of scripting svstem, you can make changes
o your code while the game is running. This makes things more like working with
clay — wou can change them continuously:

Run yvour game

Mavigate through vour game Lo (he part you want Lo test
Test it out

Write code

Go back to step 3

N S

By recoding your system while it is ronning, you can get in more loops per day, and
the quality of your game goes up commensurately. 1 have used Scheme, Smalltalk,
and Pythen for this in the past (I'm a big fan of Panda3D: www.panda3d.com),
but any late-binding language will do the job. If you are afraid that these kinds of
languages run too slowly, remember that it is okay to write vour games with more



than one kind of code: write the low-level stff that doesn’t need to change much
in something fast but static (Assembly, C++, etc.), and write the high-level stuff in
something slower but dynamic. This may take some technical work to pull off, but it
is worth it because it lets you take advantage of the Rule of the Loop.

Prototyping Tip #8: Build the Toy First

Back in Chapter 3, we distinguished between toys and games. Toys are fun to
play with for their own sake. In contrast, games have goals and are a much richer
experience based around problem solving. We should never forget, though, that
many games are built on top of toys. A ball is a toy, but baseball is a game, A little
avatar that runs and jumps is a toy, but Donkey Kong is a game. You should make
sure that your toy is fun to play with before you design a game around it. You might
find that once you actually build your toy, you are surprised by what makes it fun,
and whole new ideas for games might become apparent to vou.

Game designer David Jones says that when designing the game Lemmings,
his team followed exactly this method. They thought it would be fun to make a
little world with lots of little creatures walking around doing different things. They
weren't sure what the game would be, but the world sounded fun, so they built it.
Once they could actually play with the “toy,” they started talking seriously about
what kinds of games could be built around it. Jones tells a similar story about the
development of Grand Theft Auto: “Grand Theft Auto was not designed as Grand
Theft Auto. It was designed as a medium. It was designed to be a living, breathing
city that was fun to play.” Once the “medium” was developed, and the team could
see that it was a fun toy, they had to decide what game to build with it. They real-
ized the city was like a maze, so they borrowed maze game mechanics from some-
thing they knew was good. Jones explains: “GTA came from Pac-Man. The dots are
the little people. There’s me in my little, yellow car. And the ghosts are policemen.”

By building the toy first, and then coming up with the game, you can radically
increase the quality of your game, because it will be fun on two levels. Further,
if the gameplay you create is based on the parts of the toy that are the most fun,
the two levels will be supporting each other in the strongest way possible. Game
designers often forget to consider the toy perspective. To help us remember, we’ll
make it Lens #15.



